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摘 要：针对现有语音音色属性检测模型的特征检

测模块多采用“特征拼接+浅层分类器”范式，存在

缺乏上下文依赖建模、难以关注判别性特征以及特

征融合过程过于简单的问题。本文提出一种受 Kol
mogorov-Arnold（KA）表示定理启发的语音音色

属性检测模型。该方法聚焦属性检测模块的优化，

在检测模块中引入 Transformer 结构替代传统MLP
分类器，利用其多头注意力机制增强上下文依赖建

模能力并实现对判别性特征的动态关注；同时提出

KA 启发的特征融合模块（KAfusion），通过内层

函数（InnerFunction）建模单个说话人特征的内部

交互关系，外层函数（OutterFunction）捕捉多说

话人特征间的交互关系，实现对音色属性的融合表

征。实验结果表明，相比基线模型，检测准确率和

等错误率上分别提升了 4.13%和 3.76%。
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语音音色作为说话人声音的独特属性，具有生

物特征唯一性，在语音识别[1]、语音合成[2]和情感

计算[3]等领域具有重要的研究价值。随着多场景语

音交互需求的快速增长，对各类语音音色属性进行

特征表达，并准确检测音色属性强弱等特征具有重

要的应用意义。

语音音色属性检测通常由特征提取模块和属性

检测模块组成。特征提取模块负责将原始语音信号

建模为通用的语音嵌入表达，常用的方法包括基于

梅尔频率倒谱系数（MFCC）的统计建模[4]、深度

神经网络（如 TDNN[5]、ResNet[6]）的端到端特征

学习，以及自监督预训练模型（如Wav2Vec 2.0[7]）
的嵌入提取。属性检测模块则对语音嵌入进行属性

分类或比较，传统方法主要依赖于多层感知机（M
LP）或支持向量机（SVM）等浅层分类器[8]。然

而，这些方法在建模复杂音色属性关系时性能有限。

本文聚焦属性检测模块的设计，旨在通过引入更高

效的建模机制提升音色属性检测的性能。

现有的属性检测模块通常由分类器构成，如：

多层感知机（MLP），通过全连接层实现特征的

非线性变换与分类决策[9]；支持向量机，利用核函

数将特征映射到高维空间进行线性划分[10]；图神

经网络，通过图结构建模特征节点间的拓扑关系[1

1]；时延神经网络，采用时序滑动窗口机制捕获语

音特征的动态演变[12]；卷积神经网络，通过局部

感受野提取具有平移不变性的特征表示[13]。上述

属性检测模块对多特征处理时，多采用“特征拼接

+浅层分类器”这一极简范式构成：首先对原始语

音信号经预训练说话人编码器获取语音特征嵌入向

量，然后按通道维度直接拼接，随后使用 MLP 或

SVM 完成二分类（即属性强弱判断）。该类方法

尽管能够完成基本的属性比较任务，但在训练阶段

仅依赖交叉熵损失对末端分类器参数进行更新，存

在以下关键问题：一是缺乏对上下文依赖关系的建

模能力，难以捕捉音色属性的全局相关性；二是未

能有效关注对判别任务更重要的音色属性特征；三

是在处理多说话人音色属性比较时，特征融合过程

过于简单，既未考虑单个特征内部的交互关系，也

未建模不同特征之间的相互影响，这限制了模型在

细粒度音色属性检测中的性能。

针对上述问题，引入 Transformer[14]建模特征

全局依赖关系，受 KA 表示定理[15]启发，采用层

级函数结构实现特征内外交互的信息融合，提高属

性检测模块性能，主要贡献如下：

（1）在检测模块中引入 Transformer结构替代

传统 MLP 分类器，通过多头注意力机制增强上下

文依赖建模能力，并实现对判别性特征的动态关注。

（2）提出 KA表示定理启发的特征融合模块，

人特征的内部交互关系，通过外层函数（OutterFu
nction）通过内层函数（InnerFunction）建模单个

说话捕捉多说话人特征间的交互关系，实现对音色
————————
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属性的融合表征。实验结果表明，所提方法在音色

属性检测任务上显著优于现有基线模型。

1 本文问题

1.1 问题定义

本文语音音色属性检测任务属于比较型二分类

问题。在测试集中的说话人已在训练集中出现的设

定下，系统需判断给定属性下两个语音片段的音色

强度差异。设输入为两个语音段OA与OB，属性维

度为 v，输出为标签� ∈ [0,1]，其中� = 1 表示OA

的音色属性 v 强于OB，否则为 0。任务需从音频

{OA，OB}对中建模细粒度音色属性的强弱比较关

系。强弱比较假设由算法函数 ℱ ⟨OA, OB⟩∣v;θ 确定，

其中θ是算法参数集，问题定义如图 1所示。

图 1 问题定义

1.2 模型架构

本文提出的属性检测模型如图 2所示。包括三

个模块：Speaker Encoder、KAfusion 和 Transform
er。语音对⟨OA, OB⟩通过预训练 Speaker Encoder 提
取对应的语音嵌入向量eA ∈ ℝ� 和�� ∈ ℝ�，�表示

特征维度；将语音嵌入向量输入到核心模块 KAfus

ion，该模块对不同说话人特征进行交互建模，获

取融合特征；最后将融合特征输入到 Transformer
模块进行全局建模，并突出重要特征。模型通过全

连接层进行分类得到音色属性强弱类别。

本文提出的属性检测模型如图 2所示。包括三

个模块：Speaker Encoder、KAfusion 和 Transform
er。语音对⟨OA, OB⟩通过预训练 Speaker Encoder提
取对应的语音嵌入向量eA ∈ ℝn 和�� ∈ ℝn，�表示

特征维度；将语音嵌入向量输入到核心模块 KAfus
ion，该模块对不同说话人特征进行交互建模，获

取融合特征；最后将融合特征输入到 Transformer
模块进行全局建模，并突出重要特征。模型通过全

连接层进行分类得到音色属性强弱类别。

(1) Speaker Encoder
Speaker Encoder部分采用冻结参数的 ECAPA

-TDNN[16]预训练模型作为基础特征提取器，该模

型能够捕捉语音中的说话人特征与 timbre 相关差

异，其高质量嵌入为后续属性建模提供语义支撑。

（2）KAfusion
KAfusion 模块是本文的关键创新模块，其核

心目标是通过内外层函数建模单特征的内部交互和

不同特征的交叉交互。该模型具有结构可分解、属

性可解释的优点，形成音色属性的中间表示，详细

设计过程见 1.3节。

（3）Transformer
Transformer 模块利用多头注意力机制，在语

音特征表示空间中挖掘各音色属性之间的依赖关系

与对比线索，强化整体的判别建模能力。

图 2 模型框架

1.3 KAfusion 模块

近年来，KA 表示定理的理论框架为特征融合

网络设计提供了全新启发。它在动态卷积机制[17]，

语音分割模型[18]等领域取得了全新进展，将 KA

表示定理与特征融合机制结合，有望突破现有方法

在特征交互融合和模型适应性方面的瓶颈。KA 表

示定义将高给函数分解为单变量函数组合，提示了



深度网络通过分层非线性变换与逼近复杂映射的本

质能力，这与特征融合中层组级组合具有理论同构

性。KA 表示定理严格地证明了：对于任意定义在

紧致域上的多元连续函数 f(x)，存在一组有限个一

元连续函数ϕq和ψq,p，使得该函数可被分解为嵌套

的两层函数结构，如下所示：

�(�1, �2, …, ��) = �=1
� ��� �=1

� ��,�� (��) . (1)

其中ψq,p(⋅)表示第 i路径作用于第 j 维输入的可学

习一元映射函数，Φq(⋅)表示路径级别的非线性聚

合函数，该定理揭示了任意复杂映射函数在理论上

的“可分解性”，即通过有限次一元非线性映射即可

对其进行逼近[19]。受 KA 表示定理启发，本文将

复杂的语音特征交互过程划分为两个阶段：个体内

部属性特征交互与跨个体特征交互。具体而言，在

语音嵌入中，内层函数ψq,p(⋅)可类比为针对单个说

话人语音特征的非线性映射，用于捕捉其内部属性

之间的复杂非线性交互关系；而外层函数Φq(⋅)则
负责将两个说话人处理后的拼接特征进行融合交互，

提炼出在某一特定音色属性维度上的相对差异性表

达。基于此启示，本文提出的 KAfusion 模块分内

层非线性变换与外层组合交互映射两阶段实现语音

特征交互建模过程，具体实现如图 3所示。

图 3 KAfusion模块设计

在内层变换阶段，首先对两个说话人各自的语

音嵌入特征�� ∈ ℝ256, �� ∈ ℝ256分别输入 Innerfunc
tion 模块进行个体特征交互。该模块内部由全连接

层 Linear(256,256)与 GELU 激活函数组成，用于模

拟 KA 理论中的一元非线性函数ψ( ⋅ )。该阶段实

现了对单个说话人语音音色特征内部交互关系的建

模，输出经过非线性映射的嵌入表示：

e�A = �(W1eA),  e�B = σ(W1eB). (2)
其中σ为 GELU 激活函数，�1为内层线性变换权

重。随后，将��� = σ(�1��)与 ��� = σ(�1��)拼接成

组合特征ecat = [e�A; e�B] ∈ ℝ512，并通过 BatchNorm
1d 对其进行归一化处理，提升模型训练的稳定性

与特征表示的一致性。

在外层组合阶段，归一化后的拼接向量作为

Outterfunction 的输入，模拟�( ⋅ )对两个说话人的

音色属性特征进行融合交互建模。该模块同样由

Linear(512,512)与 GELU 激活构成，其作用是进一

步提取联合语音对中属性感知维度上的深层交互特

征，从而增强模型对于音色属性的判别能力。最终

输出为zKA = �(����) ∈ ℝ512，作为后续 Transformer
模块的输入。

整个 KAfusion 模块以非结构化、属性驱动的

方式实现了语音对之间音色属性的显式交互表示，

兼顾了特征间的非线性建模与表达紧凑性。相比于

传统的直接拼接或线性投影方法，KAfusion 更贴

合音色属性本身的复杂语义结构，有助于提升模型

在多标签音色比较任务中的判别性能。

2 实验及数据集分析

2.1数据集介绍

本研究采用 VCTK-RVA[20]数据集进行模型训

练与评估。该数据集基于 VCTK 语音语料，新增

了人工标注的声纹属性强度差异。每条标注由一对

说话人在特定音色维度（如“明亮”“低沉”“磁性”等）

上的主观强度比较组成，形式为有序对 ⟨ Speaker
A, SpeakerB，u⟩ ，其中 u∈{0,1}，u=1 表示 Spea
kerB 在该属性上相较 SpeakerA 更为显著。数据集

中共包含 101 名说话人，共构建 6038 对带音色标

签的说话人配对，每对配对最多包含 1至 3个音色

维度。

本文聚焦于可见测试任务（Seen Track），测

试说话人全部来自训练集，但测试所用语音片段与

训练无重合，且说话人配对亦为全新组合。该设置

用于评估模型在已知说话人上的音色属性迁移与判

别能力。

训练集中包含 29名男性和 49名女性说话人，

分别标注了 17 个通用及性别特有的音色维度（如

“干哑”仅用于男性，“尖锐”仅用于女性）。不同属

性下说话人配对数量不均，例如“明亮”属性下女性

训练集中配对数为 428 对，而“干净”属性下仅为 1



96对。在测试集中，每个说话人配对随机选取各 2
0个语音段，构成共 400个语音段配对。

2.2实验设置与评价指标

实验在 Ubuntu 22.04 操作系统下进行，硬件

平台为 16GB Tesla V100 GPU。使用 Python 3.8
和 PyTorch 1.12.1 构建实验框架，训练共 30 个 ep
och，batch size 设置为 128，学习率为 5e-4。损失

函数采用二元交叉熵（BCE）。

模型评估指标为准确率（ACC）和等错误率

（EER），并在各属性维度上取平均以衡量整体性

能。计算公式如下：

Avg ACC(%)= �=1
N ACC��

�
. (2)

Avg EER= �=1
N EER��

�
. (3)

其中公式(2),(3)中的 N代表类别数。

2.3对比实验

本文选择 ECAPA-TDNN[16]+MLP 和 FACodec
[21]+MLP 作为基线模型，旨在对比其在音色属性迁

移与判别任务中的表现。ECAPA-TDNN 作为一种

经典的基于 TDNN 的模型，广泛应用于说话人验

证任务[22][23][24]。它通过强调时间序列数据的局部

特征建模能力，能够有效提取说话人的音色特征。

FACodec 作为一种音频编解码器，采用因式分解

的方式将语音信号分解为多个子空间，能够有效提

取音色信息。本文选择这两种模型作为基线，是因

为它们分别代表了不同的音频处理方法，且在音色

属性任务中均有较好的效果。

表 1 性能对比

模型
Seen测试集

准确率

Seen测试集

错误率

ECAPA-TDNN+MLP 93.825% 5.94%
facodec+MLP 86.085% 13.405%

ECAPA-TDNN+KA+
Transformer

（本文方法）

97.955% 2.18%

实验结果表明（表 1），所提方法在测试集上

取得了良好的性能。在 Seen 测试集上的准确率与

错误率的表现明显优于传统的 ECAPA-TDNN+ML
P 模型，相比 ECAPA-TDNN+MLP 方法，准确率

与错误率分别提升了 4.13%和 3.76%，相比于 FAC
odec+MLP,准确率与错误率分别提升了 11.87%和 1
1.225%。

为了更加直观展示本文方法在模型上的贡献，

本文绘制了如图 4-8所示的柱状图，分别展现出测

试集中不同性别的说话人音色识别的准确率和等错

误率，不同性别的音色识别准确率，不同性别的音

色识别等错误率。其中图 4左侧是基于准确率的对

比，右侧是基于等错误率的对比。图 5，图 6，图

7，图 8分别代表女性不同音色特征识别准确率，

男性不同音色特征识别准确率，女性不同音色特征

识别等错误率，男性不同音色特征识别等错误率。

图 4 性别平均指标对比

图 5 女性不同音色特征识别准确率对比



图 6 男性不同音色特征识别准确率对比

图 7 女性不同音色特征识别等错误率对比

图 8 男性不同音色特征识别等错误率对比

由图 4-6 得出，在不同模型结构下性别识别任

务的性能差异显著，且 ECAPA-TDNN 结合 KA 模

块与 Transformer结构（即 ECAPA-TDNN+KA+Tra
nsformer）整体表现最为优异。在性别平均指标对

比图中，该模型在男女两个群体上都取得了最高的

平均准确率（男性 98.53%，女性 97.38%）和最低

的平均 EER（男性 1.65%，女性 2.71%），明显优

于 FACodec+MLP 与 ECAPA-TDNN+MLP 的基线

结构。进一步从特征层面的 EER 对比图可以看出，

ECAPA-TDNN+KA+Transformer 在多种语音特征

（如低沉、单薄、干净、明亮等）下都显著降低了

错误识别率，特别是在 FACodec+MLP 存在显著性

能瓶颈的特征上，该组合结构表现出更强的鲁棒性

和适应性。而在特征准确率的对比中，ECAPA-TD
NN+KA+Transformer 同样在大多数特征上均获得

最高的准确率，例如女性低沉语音的识别准确率达

到 96.3%，男性明亮语音准确率高达 99.4%，均远

超其他模型结构。综合来看，融合 KA 模块与 Tra
nsformer的注意力机制能够更有效地建模语音信号

的复杂时序与特征分布，从而显著提升在性别识别

任务中的泛化能力与判别性能。

2.4消融实验

为全面验证所提出的 ECAPA-TDNN+KA+Tran
sformer 模型各组件的有效性，本文设计了一系列

的消融实验，分析每个组件对于整体性能的贡献。

表 4展示了消融实验的详细结果，包括准确率和错

误率两个指标。

消融实验结果表明（表 2），基线模型 ECAP
A-TDNN+MLP已展现出较高的性能（准确率为 93.
825%，错误率为 5.94%）。引入 KA 特征融合模

块后，准确率提升 3.845%，错误率降低 3.565%，

充分验证了该模块在增强特征交互与表示能力方面

的有效性。进一步地，单独引入 Transformer 模块



后，准确率提升 2.75%，错误率降低 2.395%，表

明 Transformer 在 ECAPA-TDNN 编码器中补充了

对上下文信息的建模能力，有效缓解了原始模型在

处理复杂上下文信息时的局限性。

表 2 不同模型组合的性能对比

模型组合 Seen测试集

准确率

Seen测试集错

误率

相比基线模型

（ACC）
相比基线模型

（EER）
ECAPA-TDNN+MLP 93.825% 5.94% / /

ECAPA-TDNN+KA+MLP 97.67% 2.375% 3.845%↑ -3.565%↑
ECAPA-TDNN+Transformer 96.575% 3.545% 2.75%↑ -2.395%↑

ECAPA-TDNN+KA+Transformer 97.955% 2.18% 4.13%↑ -3.76%↑
FACodec+MLP 86.085% 13.405% / /

FACodec+KA+MLP 88.87% 10.91% 2.785%↑ -2.495%↑
FACodec+Transformer 79.885% 18.76% -6.2%↓ 5.355%↓

FACodec+KA+Transformer 89.455% 10.8% 3.37%↑ -2.605%↑
此外，结合 KA 和 Transformer 模块后的 ECA

PA-TDNN+KA+Transformer 模型，准确率进一步

提升至 97.955%，错误率降至 2.18%，相比基线模

型 ECAPA-TDNN+MLP，准确率提升了 4.13%，错

误率下降了 3.76%。这表明 KA 与 Transformer 的
联合使用能有效增强模型的表达能力，并在提高准

确率的同时显著降低错误率，进一步验证了组合模

块的优势。

针对 FACodec+Transformer组合导致性能下降

的现象，表明 FACodec 编码器提取的音色表示中

缺乏有效的交互信息，难以激发 Transformer 注意

力机制的优势。通过引入 KA特征融合模块，能够

挖掘并增强音色特征之间的交互关系，从而使 Tra
nsformer得以利用其注意力机制，有效聚焦于与音

色强度差异相关的关键特征区域，进一步发挥其上

下文建模能力，提升整体模型性能。

对于 ECAPA-TDNN+Transformer的性能提升，

ECAPA-TDNN本身具有处理时间序列数据的优势，

它通过不同的卷积层捕捉音频信号的局部特征。然

而，传统的 ECAPA-TDNN模型存在局限性，因为

它的时间上下文建模能力有限，通常只能考虑较小

范围的时间步。结合 Transformer 后，利用其注意

力机制来捕捉更长时间范围的依赖关系。Transfor
mer的全局上下文建模能力，使得模型能够学习到

更丰富的时间特征，从而增强了对长时间依赖的建

模能力[25]。

3 结论

针对现有语音音色属性检测模型在特征融合过

程中存在的维度交互缺失与全局依赖建模薄弱问题，

本文提出基于 KA表示定理的特征融合模型，通过

构建 KAfusion 模块实现对单个说话人特征内部交

互和多说话人特征间交互关系的显式建模，并引入

Transformer 编码器有效捕捉音色属性的全局依赖

关系。实验验证表明，KAfusion 模块相较传统特

征融合策略表现出更优的结构表征能力，对比实验

证实该模型在音色属性检测任务中优于主流基线方

法，消融实验验证了特征融合与全局建模组件的协

同有效性。总体而言，该方法通过特征交互的显式

建模与全局依赖的协同优化，实现了音色属性检测

性能的有效提升。然而，在多属性并行计算场景下

仍存在效率优化空间，未来将聚焦轻量化架构设计

与跨语种自适应学习策略，进一步提升模型在复杂

声学环境中的鲁棒性。
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Speech timbre attribute detection model inspired by KA repre

sentation theorem

PENG Cheng1, JIANG Lin1,2, PENG Bo1, CHENG Ying Chao1, DENG Sai Nan1

(1. School of Artificial Intelligence and Advanced Computing, Hunan University of Technology and Business,
Changsha 410205, China;

2. Xiang Jiang Laboratory, Changsha 410205, China)
Abstract:For the existing voice timbre attribute detection models, the feature detection module mostly ad
opts the "feature splicing shallow classifier" paradigm, which has the problems of lack of context-depend
ent modeling, difficulty in focusing on discriminant features, and too simple feature fusion process. In thi
s paper, a speech timbre attribute detection model inspired by the Kolmogorov-Arnold (KA) representatio
n theorem is proposed. The method focuses on the optimization of the attribute detection module, introdu
ces the Transformer structure to replace the traditional MLP classifier in the detection module, and uses
its multi-head attention mechanism to enhance the context-dependent modeling ability and realize the dyn
amic attention of discriminant features. At the same time, a KA-inspired feature fusion module (KAfusion)
is proposed, which models the internal interaction relationship of a single speaker feature through the in
ner function (InnerFunction), and the outer function (OutterFunction) captures the interaction relationship
between multiple speaker features to realize the fusion representation of timbre attributes. Experimental re
sults show that the proposed method is significantly better than the existing baseline model in the detecti
on of timbre attributes.
Key words: speech timbre attribute detection; feature fusion; Kolmogorov-Arnold represents the theorem;
Transformer model


