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Abstract. This paper presents the AuroraLab system for the Voice
Timbre Attribute Detection (vTAD) 2025 Challenge. In this challenge,
we propose a novel framework that introduces discriminative speaker
embeddings (DSE) into the vTAD task, termed DSE-vTAD. DSE-vTAD
leverages strong speaker embedding extractors to obtain discriminative
speaker embeddings. In addition, unlike the challenge’s baseline system,
DSE-vTAD concatenates a pair of speaker embeddings along with their
Hadamard product features. Compared with the baseline system, DSE-
vTAD achieves significant performance improvements. On the unseen
test set, the best DSE-vTAD system achieves 91.31% Avg ACC and
8.54% Avg EER. On the seen-speaker test set, the best DSE-vTAD sys-
tem achieves 97.32% Avg ACC and 2.72% Avg EER.

Keywords: Voice timbre attribute detection · vTAD 2025 Challenge ·
Speaker embedding · Hadamard product.

1 Introduction

Voice timbre attribute detection (vTAD) [1, 2] is a task that aims to determine
whether there exists a relative strength difference in a specific timbre attribute
between two speech utterances. Timbre attributes refer to perceptual descriptors
used by listeners to characterize a speaker’s timbre based on auditory cues, such
as bright, coarse, round, and magnetic. This task aims to deepen the understand-
ing of voice timbre by analyzing and modeling speaker-specific timbre attributes,
thereby advancing the development of timbre-related speech technologies such
as explainable speaker recognition [3] and speaker generation [4–6].
⋆ This work was supported by the National Natural Science Foundation of China under
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In recent years, speaker-related tasks have commonly employed low-dimensional
speaker embeddings to represent target speakers [7,8]. This has motivated exten-
sive research on extracting discriminative speaker embeddings, including using
larger-scale datasets [9,10], improvements in network architectures [11–17], and
the disentanglement of speaker-independent information [18–22].

In this paper, we propose a novel framework for the vTAD task by introducing
discriminative speaker embeddings (DSE) called DSE-vTAD. First, DSE-vTAD
employs a pretrained speaker embedding extractor to derive speaker embed-
dings from an ordered pair of speech utterances. Then, unlike the challenge’s
baseline system1, DSE-vTAD concatenates the two speaker embeddings along
with their Hadamard product to explicitly capture the dimension-wise relation-
ships between them. Finally, a classification network performs voice timbre at-
tribute detection based on the concatenated features. Specifically, we evaluate
four speaker embedding extractors within the DSE-vTAD framework: ECAPA-
TDNN [15], FACodec [21], SimAM-ResNet34 [13], and SimAM-ResNet100 [13].
On the vTAD 2025 Challenge test sets, the DSE-vTAD system with FACodec
achieves the best performance in the unseen test set, while the system using
SimAM-ResNet100 performs best in the seen-speaker test set.

The main contributions of this paper are summarized as follows:

• We propose DSE-vTAD, a novel framework that introduces discriminative
speaker embeddings to enhance performance on the vTAD task.

• DSE-vTAD explicitly models the relationship between a pair of speaker em-
beddings by concatenating them with their Hadamard product.

• Extensive experiments on the vTAD 2025 Challenge show that DSE-vTAD
significantly outperforms the baseline systems in unseen and seen-speaker
test sets.

2 Task Description

In the vTAD task, a set of timbre attribute descriptors is defined as V. Given a
pair of speech utterances OA and OB from speakers A and B, respectively, the
primary goal of vTAD is to determine whether OB is stronger than OA with
respect to a specified timbre descriptor v, where v ∈ V.

Mathematically, the task can be formulated as a strength comparison hypoth-
esis H (⟨OA,OB⟩, v) ∈ {0, 1}, where H = 1 indicates that the hypothesis (i.e.,
OB is stronger than OA on attribute v) holds true, and H = 0 indicates that
the hypothesis is false. The hypothesis is determined by the vTAD algorithm
function F (⟨OA,OB⟩|v; θ), with θ representing the set of algorithm parameters.

3 Methods

In this section, we sequentially introduce the proposed DSE-vTAD network, the
employed loss functions, and the inference process. The framework of the DSE-
vTAD network is illustrated in Fig. 1.
1 https://github.com/vTAD2025-Challenge/vTAD

https://github.com/vTAD2025-Challenge/vTAD
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Fig. 1: An overview of the proposed DSE-vTAD network framework.

3.1 DSE-vTAD Network

We define a training sample as {⟨OA,OB⟩, l}, where l is a ground-truth vector
label. When the timbre descriptor set V contains N timbre attributes, l is an
N -dimensional vector, where each element ln ∈ {0, 1,−1} corresponds to the
n-th attribute. Specifically, ln = 1 indicates that OB is stronger than OA in the
n-th timbre attribute, while ln = 0 indicates that this comparison does not hold.
If ln = −1, the two utterances are not compared under this attribute.

Given a training sample {⟨OA,OB⟩, l}, the DSE-vTAD model first extracts
discriminative speaker embeddings eA and eB from speech utterances OA and
OB, respectively, using a pretrained speaker embedding extractor. This extrac-
tor remains frozen throughout the training process. The Hadamard product of
eA and eB is computed to produce a joint representation eAB. These three
features—eA, eB, and eAB—are concatenated to form a new feature vector eC,
which is then passed to a classification network. The classification network adopts
the same architecture as used in the vTAD 2025 Challenge: a fully connected
layer for dimensionality reduction, followed by a batch normalization layer, a
ReLU activation, a dropout layer, a classification fully connected layer, and a
final sigmoid function. The output is a prediction vector ŷ. The predicted value
for the n-th timbre attribute descriptor is denoted as ŷn, where n = 1, 2, . . . , N .

3.2 Loss Function

During model training, only samples with labels ln ∈ {0, 1} are involved in
optimizing the model parameters. The loss function is formulated as follows.

L = I[ln ∈ {0, 1}] ·BCE (ln, ŷn) , (1)

where BCE(·) denotes the binary cross-entropy function.

3.3 Inference

During the inference stage, given a pair of speech utterances ⟨OA,OB⟩ and the
corresponding timbre attribute descriptor v, the utterances OA and OB are fed
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into the DSE-vTAD model to produce a prediction vector ŷ. The confidence
score indicating whether OB is stronger than OA in the timbre attribute v is
obtained from the position in ŷ corresponding to v. If the confidence score is
greater than or equal to 0.5, the hypothesis is considered true; otherwise, it is
false. Furthermore, the confidence scores and the predicted labels can be used
to evaluate the model’s performance.

4 Experimental Setups

In this section, we first introduce the dataset used in the vTAD 2025 Chal-
lenge, followed by a description of the training details of the DSE-vTAD models.
Finally, we present the evaluation metrics employed in the experiments.

4.1 Dataset

The VCTK-RVA dataset [5] is used in this challenge. It is built upon the publicly
available VCTK corpus [23], with additional annotations that describe the rela-
tive intensity differences of voice timbre attributes between same-gender speaker
pairs. The dataset includes 18 timbre attributes: bright, thin, coarse, slim, low,
pure, rich, magnetic, muddy, hoarse, round, flat, shrill, shriveled, muffled, soft,
transparent, and husky. Notably, the attribute husky appears only in male speak-
ers, while shrill appears only in female speakers. As a result, each gender is as-
sociated with 17 timbre descriptors. The VCTK-RVA dataset consists of 40,892
speech utterances from 101 speakers and includes 6,038 speaker pair annotations
in the form of {Speaker A, Speaker B, voice attribute v}. Each annotation indi-
cates that Speaker B exhibits a stronger intensity than Speaker A in the timbre
attribute v. Each speaker pair is annotated with strength comparisons in 1 to 3
timbre attributes.

In the challenge, the VCTK-RVA dataset is divided into two parts for training
and evaluation. The training set consists of 29 male and 49 female speakers.
For each gender, the speaker pairs annotated in the training set cover all 17
timbre attributes. In total, the training set comprises 136,320 speech utterance
pairs. In the test set, all timbre strength comparisons are made within the same
gender. For each gender, five timbre attributes are evaluated: the attributes for
male speakers are bright, thin, low, magnetic, and pure, while those for female
speakers are bright, thin, low, coarse, and slim. Furthermore, based on whether
the test speakers appear in the training set, the evaluation defines two tracks:
unseen and seen-speaker. For each ordered speaker pair, 20 speech utterances are
randomly selected for each speaker, resulting in 400 utterance pairs. The unseen
test set contains 91,600 utterance pairs, and the seen-speaker test set contains
94,000. For each timbre attribute in both test sets, the ratio of samples labeled
0 and 1 is 3:1.
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4.2 Implementation Details

To extract discriminative speaker embeddings, we adopt four pretrained mod-
els: ECAPA-TDNN, FACodec, SimAM-ResNet34, and SimAM-ResNet100. The
ECAPA-TDNN2 and FACodec3 extractors are consistent with the baseline sys-
tems of the vTAD 2025 Challenge. They are trained on the VoxCeleb1&2 [24,25]
development sets, containing 7,205 speakers and the Libri-light dataset [26], con-
taining 7,439 speakers, respectively. SimAM-ResNet34 and SimAM-ResNet100
are trained on the large-scale VoxBlink2 dataset [10], which includes 111,284
speakers, using the open-source Wespeaker [27] toolkit4. The speaker embed-
dings extracted by ECAPA-TDNN have a dimensionality of 192, while the others
have a dimensionality of 256.

All vTAD models adopt the same training strategy. We use the Adam [28]
optimizer with an initial learning rate of 0.01 to update model parameters. A
cosine annealing learning rate scheduler is applied to adjust the learning rate for
each epoch. The batch size is set to 256, and the training is conducted for a total
of 50 epochs. The model obtained from the final epoch is used for evaluation.

4.3 Evaluation Metrics

The challenge adopts Accuracy (ACC) and Equal Error Rate (EER) as per-
formance evaluation metrics. The average ACC and EER, denoted as Avg ACC
and Avg EER, respectively, are computed by averaging the ACC and EER scores
across all timbre attributes (five attributes for male speakers and five for female
speakers, totaling ten attributes). The detailed formulas are as follows:

AvgACC =

∑N
i=1 ACCi

N
, (2)

AvgEER =

∑N
i=1 EERi

N
. (3)

Here, N = 10 denotes the total number of timbre attributes. ACCi and
EERi represent the Accuracy and Equal Error Rate of the i-th timbre attribute,
respectively. A higher Avg ACC and a lower Avg EER indicate better system
performance.

5 Results and Analysis

In this section, we first compare the performance of the baseline and the proposed
DSE-vTAD system. We then report the evaluation results of the DSE-vTAD
system using FACodec and SimAM-ResNet100 speaker embedding extractors
on each timbre attribute across two test sets. Next, we analyze the effectiveness
of incorporating concatenated Hadamard product features. Finally, we conduct
an ablation study on the DSE-vTAD system with different dropout rates.
2 https://github.com/Snowdar/asv-subtools
3 https://github.com/lifeiteng/naturalspeech3_facodec
4 https://github.com/wenet-e2e/wespeaker

https://github.com/Snowdar/asv-subtools
https://github.com/lifeiteng/naturalspeech3_facodec
https://github.com/wenet-e2e/wespeaker
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5.1 Comparison of Baseline and DSE-vTAD Systems Performance

Table 1: Performance comparison overview of different vTAD systems. The best
result for each evaluation metric is shown in bold, and the second-best is under-
lined.

System Speaker Embedding
Extractor

Unseen Seen-speaker

Avg ACC (%) Avg EER (%) Avg ACC (%) Avg EER (%)

Baseline 1 ECAPA-TDNN 71.52 28.33 94.51 5.51
Baseline 2 FACodec 90.76 9.31 93.26 6.45

DSE-vTAD
(ours, p = 0.5)

ECAPA-TDNN 67.57 32.10 96.02 3.95
FACodec 90.95 8.92 95.31 4.55

SimAM-ResNet34 76.08 23.67 96.97 2.86
SimAM-ResNet100 76.20 23.56 97.32 2.72

DSE-vTAD
(ours, p = 0.6)

ECAPA-TDNN 69.25 30.72 95.95 4.13
FACodec 91.31 8.54 95.31 4.61

SimAM-ResNet34 76.39 23.48 97.05 2.98
SimAM-ResNet100 77.07 22.24 97.15 2.80
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0.25

Lo
ss

ECAPA-TDNN (p=0.5)
FACodec (p=0.5)
SimAM-ResNet34 (p=0.5)
SimAM-ResNet100 (p=0.5)
ECAPA-TDNN (p=0.6)
FACodec (p=0.6)
SimAM-ResNet34 (p=0.6)
SimAM-ResNet100 (p=0.6)

Fig. 2: Training loss curves of different DSE-vTAD systems.

Table 1 compares the Avg ACC and Avg EER of different vTAD systems
on the unseen and seen-speaker test sets. The DSE-vTAD system employing
the FACodec speaker embedding extractor achieves the best performance on the
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unseen test set, while the one using the SimAM-ResNet100 extractor performs
best on the seen-speaker test set.

Compared to the baseline system provided by the vTAD 2025 Challenge, the
DSE-vTAD system employing the ECAPA-TDNN speaker embedding extractor
outperforms the baseline on the seen-speaker test set. With a dropout rate of
0.5, the Avg ACC and Avg EER are relatively improved by 1.60% and 28.31%,
respectively. The DSE-vTAD system based on the FACodec extractor surpasses
the baseline across all evaluation metrics. For instance, with a dropout rate of
0.6, the Avg ACC and Avg EER on the unseen test set are relatively improved
by 0.61% and 8.27%, respectively, while those on the seen-speaker test set are
improved by 2.20% and 28.53%, respectively.

Among the DSE-vTAD systems with the same dropout rate, the system
utilizing SimAM-ResNet100 as the speaker embedding extractor achieves the
best performance on the seen-speaker test set. This can be attributed to its
training on large-scale data and larger model capacity. In contrast to the other
three speaker embedding extractors trained solely with speaker labels, FACodec
employs a speech disentanglement training strategy to reduce the influence of
speaker-irrelevant information. As a result, the DSE-vTAD system using FA-
Codec as the extractor achieves the best performance on the unseen test set.
These results indicate that speaker embedding extractors with speech disentan-
glement exhibit better generalization capability in the vTAD task.

Fig. 2 illustrates the variation in training loss over epochs for different DSE-
vTAD systems. Since SimAM-ResNet34 and SimAM-ResNet100 are pretrained
on larger-scale datasets, the DSE-vTAD systems using them as speaker em-
bedding extractors exhibit lower training losses. To mitigate overfitting, higher
dropout rates lead to increased training losses.

Table 2: Evaluation results of the DSE-vTAD systems on the unseen test set.
The DSE-vTAD system employing the FACodec speaker embedding extractor is
configured with a dropout rate of p = 0.6, while SimAM-ResNet100 uses p = 0.5.
Speaker Embedding

Extractor
Male Female

Attr. ACC (%) EER (%) Attr. ACC (%) EER (%)

FACodec

Bright(明亮) 94.99 5.28 Bright(明亮) 88.94 11.29
Thin(单薄) 90.42 9.87 Thin(单薄) 89.95 9.85
Low(低沉) 95.81 4.33 Low(低沉) 85.90 14.82

Magnetic(磁性) 95.24 3.98 Coarse(粗) 93.16 7.15
Pure(干净) 85.50 12.72 Slim(细) 93.23 6.06

Avg 92.39 7.24 Avg 90.24 9.83

SimAM-ResNet100

Bright(明亮) 81.07 20.01 Bright(明亮) 49.27 49.79
Thin(单薄) 77.41 22.06 Thin(单薄) 48.21 52.76
Low(低沉) 90.04 7.49 Low(低沉) 55.98 43.78

Magnetic(磁性) 92.31 6.78 Coarse(粗) 93.04 8.17
Pure(干净) 83.58 16.39 Slim(细) 91.07 8.38

Avg 84.88 14.55 Avg 67.51 32.58
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Table 3: Evaluation results of the DSE-vTAD systems on the seen-speaker test
set. The DSE-vTAD system employing the FACodec speaker embedding extrac-
tor is configured with a dropout rate of p = 0.6, while SimAM-ResNet100 uses
p = 0.5.
Speaker Embedding

Extractor
Male Female

Attr. ACC (%) EER (%) Attr. ACC (%) EER (%)

FACodec

Bright(明亮) 98.15 1.85 Bright(明亮) 92.74 7.30
Thin(单薄) 97.88 2.33 Thin(单薄) 94.54 5.27
Low(低沉) 98.25 1.73 Low(低沉) 99.50 0.47

Magnetic(磁性) 97.00 3.20 Coarse(粗) 93.11 6.76
Pure(干净) 83.23 15.90 Slim(细) 98.74 1.26

Avg 94.90 5.00 Avg 95.73 4.21

SimAM-ResNet100

Bright(明亮) 99.45 0.55 Bright(明亮) 93.24 6.82
Thin(单薄) 99.42 0.60 Thin(单薄) 96.21 3.76
Low(低沉) 100.00 0.00 Low(低沉) 98.72 1.28

Magnetic(磁性) 99.80 0.47 Coarse(粗) 99.58 0.47
Pure(干净) 86.92 13.13 Slim(细) 99.87 0.14

Avg 97.12 2.95 Avg 97.52 2.49

5.2 Evaluation Results on Different Timbre Attributes

Tables 2 and 3 present the performance of the DSE-vTAD systems using FA-
Codec and SimAM-ResNet100 as speaker embedding extractors on each timbre
attribute in the unseen and seen-speaker test sets, respectively. It can be observed
that, on the unseen test set, the strength of timbre attributes is more distinguish-
able in male speech utterance pairs. In contrast, on the seen-speaker test set, the
strength of timbre attributes is more distinguishable in female speech utterance
pairs. Furthermore, considering the performance across the unseen and seen-
speaker test sets, utterance pairs with the attribute pure for males and bright
for females are relatively more difficult to distinguish.

5.3 Effectiveness Analysis of Hadamard Product Features

Table 4 compares the system performance with and without concatenating the
Hadamard product features. It can be observed that incorporating the Hadamard
product features leads to performance improvements across multiple evaluation
metrics. In particular, when the dropout rate is set to 0.5, the DSE-vTAD sys-
tems using FACodec and SimAM-ResNet100 as speaker embedding extractors
exhibit consistent improvements across all evaluation metrics. Taking SimAM-
ResNet100 as an example, the system achieves relative improvements of 0.83%
in Avg ACC and 3.80% in Avg EER on the unseen test set, and 0.41% in Avg
ACC and 11.11% in Avg EER on the seen-speaker test set.
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Table 4: Comparison of vTAD system performance with and without Hadamard
product feature concatenation.
Speaker Embedding

Extractor Add eAB
Unseen Seen-speaker

Avg ACC (%) Avg EER (%) Avg ACC (%) Avg EER (%)

p = 0.5

ECAPA-TDNN ✗ 68.53 31.97 95.50 4.20
✓ 67.57 32.10 96.02 3.95

FACodec ✗ 90.33 9.90 95.14 4.92
✓ 90.95 8.92 95.31 4.55

SimAM-ResNet34 ✗ 75.34 25.09 96.98 3.17
✓ 76.08 23.67 96.97 2.86

SimAM-ResNet100 ✗ 75.57 24.49 96.92 3.06
✓ 76.20 23.56 97.32 2.72

p = 0.6

ECAPA-TDNN ✗ 70.51 29.92 95.22 4.60
✓ 69.25 30.72 95.95 4.13

FACodec ✗ 90.91 9.39 95.39 4.60
✓ 91.31 8.54 95.31 4.61

SimAM-ResNet34 ✗ 76.11 23.69 96.87 2.98
✓ 76.39 23.48 97.05 2.98

SimAM-ResNet100 ✗ 77.06 23.12 97.11 2.97
✓ 77.07 22.24 97.15 2.80

5.4 Ablation Study on Dropout Rate

Table 5 compares the performance of the DSE-vTAD system using SimAM-
ResNet100 as the embedding extractor under different dropout rates. When the
dropout rate is 0.6, the system performs best on the unseen test set, with an Avg
ACC of 77.07% and an Avg EER of 22.24%. On the seen-speaker test set, the best
performance is observed at a dropout rate of 0.5, with an Avg ACC of 97.32% and
an Avg EER of 2.72%. As the dropout rate increases, the system performance
improves and degrades. These results suggest that tuning the dropout rate can
enhance the robustness and generalization ability of the model.

6 Conclusions

In this paper, we propose a novel framework called DSE-vTAD for the vTAD
task. Based on the baseline system of the vTAD 2025 Challenge, DSE-vTAD in-
corporates discriminative speaker embeddings and concatenates the embeddings
of speech utterance pairs along with their Hadamard product features. Experi-
mental results on unseen and seen-speaker test sets demonstrate that DSE-vTAD
significantly outperforms the baseline system. In future work, we plan to adopt
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Table 5: Comparison of DSE-vTAD system performance across various dropout
rates. All systems employ the SimAM-ResNet100 speaker embedding extractor.

Dropout Rate (p) Unseen Seen-speaker

Avg ACC (%) Avg EER (%) Avg ACC (%) Avg EER (%)

0.3 75.21 24.33 96.87 3.04
0.4 74.37 25.04 96.69 3.20
0.5 76.20 23.56 97.32 2.72
0.6 77.07 22.24 97.15 2.80
0.7 75.97 24.07 96.99 3.19
0.8 76.91 22.80 96.98 3.02

more discriminative speaker embeddings and further optimize the feature fusion
strategy to enhance the robustness and generalization ability of the model for
the vTAD task.
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