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Abstract. This paper presents the Voice Timbre Attribute Detection
(vTAD) systems developed by the Digital Signal Processing & Speech
Technology Laboratory (DSP&STL) at The Chinese University of Hong
Kong (CUHK) for the 20th National Conference on Human-Computer
Speech Communication (NCMMSC 2025) vTAD Challenge. The pro-
posed systems leverage WavLM-Large embeddings with attentive statis-
tical pooling to extract robust speaker representations, followed by two
variants of Diff-Net—Feed-Forward Neural Network (FFN) and Squeeze-
and-Excitation-enhanced Residual FFN (SE-ResFFN)-to compare tim-
bre attribute intensities between utterance pairs. Experimental results
demonstrate that the WavLM-Large+FFN system generalises better to
unseen speakers, achieving 77.96% accuracy and 21.79% EER, while
the WavLM-Large+SE-ResFFN model excels in the ‘Seen’ setting with
94.42% accuracy and 5.49% EER. These findings highlight a trade-off
between model complexity and generalization, and underscore the im-
portance of architectural choices in fine-grained speaker modelling. Our
analysis also reveals the impact of speaker identity, annotation subjec-
tivity, and data imbalance on system performance, pointing to future
directions for improving robustness and fairness in timbre attribute de-
tection.
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1 Introduction

The Voice Timbre Attribute Detection (vTAD) Challenge [1,2], held as part
of the 20th National Conference on Human-Computer Speech Communication
(NCMMSC 2025), focuses on identifying perceptual differences in voice timbre
attributes between speakers by comparing pairs of utterances. Timbre is charac-
terised using a set of sensory descriptors inspired by various modalities, including
auditory (e.g., hoarse, rich), visual (e.g., bright, dark), tactile (e.g., soft, hard),
and physical (e.g., magnetic, transparent) perceptions.
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Our proposed systems leverage WavLM-Large [3], a large-scale speech self-
supervised learning (SSL) representation model, to extract robust voice features.
These features are further refined using attentive statistical pooling (ASTP)
[4] before being passed into a comparison network, referred to as Diff-Net. We
explore two architectural variants of Diff-Net for modelling attribute intensity
differences: a standard Feed-Forward Neural Network (FFN) [5], and a Deep
Residual FFN enhanced with Squeeze-and-Excitation blocks (SE-ResFFN) [5-
8].

The design motivation is to harness the rich, hierarchical representations
encoded by large-scale speech self-supervised learning (SSL) models, while ef-
fectively utilising deep speaker verification (SV) architectures as downstream
classifiers for fine-grained timbre attribute comparison.

2 Datasets

The core component of our system is WavLM-Large, a self-supervised model
pre-trained on a massive 94,000-hour corpus comprising 10,000 hours from Gi-
gaSpeech [9], 24,000 hours from VoxPopuli [10], and 60,000 hours from LibriLight
[11].

For training and evaluation of the downstream Diff-Net modules (i.e., FEN
and SE-ResFFN), we use the VCTK-RVA dataset [12]. This dataset provides an-
notations for 17 timbre descriptors for both male and female speakers, resulting
in a total of 34 distinct timbre attributes. Each descriptor captures a perceptual
quality of the voice, and comparisons are made between pairs of utterances to
determine relative intensity.

The VCTK-RVA dataset comprises over 6,000 annotated speaker pairs, with
each pair labelled for one to three timbre descriptors. These descriptors char-
acterise perceptual qualities of the voice, such as bright, thin, coarse, magnetic,
shrill, and husky. Since the annotations are derived from human judgments, they
inherently reflect subjective interpretations of vocal timbre. This subjectivity in-
troduces variability in the data, which poses challenges for model consistency and
generalisation across unseen speakers and utterances.

3 System Description

3.1 Audio Pre-Processing

To enhance the accuracy of timbre attribute extraction, we apply a silence re-
moval procedure that eliminates non-informative segments from the audio signal.
Silence is defined as regions where the signal energy falls below 40 dB, and is
detected using a sliding window of 25 milliseconds (ms) with a hop size of 10 ms.
The process targets leading and trailing silence while preserving internal pauses,
thereby retaining the natural rhythm and structure of speech. To prevent exces-
sive trimming, a safeguard is implemented: if the remaining waveform is shorter
than 100 ms, the silence removal step is bypassed to ensure the preservation of
meaningful acoustic content.
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Fig. 1. The overall design concept of the systems.

3.2 System Overview

Figure 1 illustrates the overall architecture of our proposed systems. The design
closely follows the baseline framework introduced in the vTAD Challenge [1, 2],
which consists of a speaker encoder followed by a comparison network.

Given a pair of input utterances, denoted as Op and Og, the speaker encoder
extracts corresponding embeddings ex and eg. These embeddings are concate-
nated to form a joint representation ep, which is then passed into the Diff-Net
module.

The Diff-Net produces an output vector of dimension N, where each element
corresponds to a specific timbre attribute. A sigmoid activation is applied to this
output to generate the prediction vector §. The n-th element of § (n = 1,2, ..., 34)
represents the predicted likelihood that utterance Op exhibits a stronger inten-
sity than O for the n-th timbre descriptor.

3.3 Speaker Encoder

Figure 2 illustrates the speaker encoder architecture, which integrates the WavL.M-
Large model [3] with an ASTP module [4]. The WavLM-Large model consists of
a convolutional neural network (CNN) encoder layer [13] followed by 24 stacked
Transformer blocks [14]. Each pre-processed utterance is fed into the model in
its entirety, without cropping.

From the CNN encoder and each of the 24 Transformer blocks, we extract
1024-dimensional frame-level intermediate representations, resulting in 25 such
frame-level representations per utterance. These representations are first aver-
aged across frames to produce 25 layer-wise embeddings, which are then aggre-
gated by the ASTP module.

Originally designed for frame-level aggregation in SV tasks, the ASTP mod-
ule is repurposed in our system to perform layer-wise aggregation. This adap-
tation allows the model to exploit the rich hierarchical features encoded across
all layers of the WavLM-Large model. Specifically, eight attention heads are
employed to compute weighted statistics (mean and standard deviation) across
layers, yielding a 2048-dimensional embedding for each utterance.
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Fig. 2. The WavLM-Large module with the adoption of ASTP for voice feature ex-
traction.

The embeddings from the two input utterances are concatenated to form a
4096-dimensional feature vector, which serves as input to the Diff-Net. To miti-

gate over-fitting, two dropout layers with a dropout rate of 0.1 are incorporated
within the ASTP module.

3.4 Diff-Net

Figure 4 presents the architectures of the two Diff-Net variants employed in our
systems.

The first variant is an enhanced version of the traditional Feed-Forward Neu-
ral Network (FFN) used in prior work [1,2]. It consists of four sequential FFN
blocks with hidden dimensions of [512, 256, 128, 64].. Each block comprises a fully
connected (FC) layer, followed by batch normalisation (BN), a ReLU activation
function, and a dropout layer with a dropout rate of 0.3. After the final FFN
block, an additional FC layer is applied to produce predictions for all 34 timbre
attributes.

The second variant, SE-ResFFN, is inspired by the squeeze-and-excitation
ResNet (SE-ResNet) architecture, which has shown strong performance in SV
tasks [6,8]. As illustrated in Figure 5, this model incorporates four SE-ResNet
blocks with hidden dimensions of [1024, 1024, 512, 256]. Following these blocks, a
BN layer is applied, and the resulting features are passed through two FC layers
with hidden dimensions [192, 64], interleaved with a ReLU activation. A final FC
layer then outputs the predictions for the 34 timbre attributes.
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Fig. 3. The original ASTP mechanism.

Both architectures conclude with a sigmoid activation function, which trans-
forms the raw outputs into probability scores representing the predicted like-
lihood that the second utterance exhibits a stronger intensity for each timbre

attribute.
iep

Fig. 4. The architecture of the Diff-Net structure based on (a) FFN and (b) SE-
ResFFN.

(b)

4 Excremental Settings

Model training was conducted over 10 epochs with a batch size of 16, using
the AdamW optimiser [15] with a learning rate of le — 4 and a weight decay
of 0.01. A cosine annealing scheduler [16] was employed to adjust the learning
rate dynamically throughout training. The loss function used was binary cross-
entropy with sample-wise reduction, and model validation was performed after
each epoch. To ensure reproducibility, all experiments were initialised with a
fixed random seed (42).

The proposed systems were evaluated under two distinct scenarios: ‘Unseen’
and ‘Seen’. In the ‘Unseen’ scenario, the speakers in the test set do not appear in
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Fig.5. (a) An SE-ResNet block. (b) A squeeze-and-excitation block inside an SE-
ResNet block.

the training set, thereby assessing the model’s generalisation capability. In the
‘Seen’ scenario, the same set of speakers is used for both training and evalua-
tion, but with non-overlapping utterances. Furthermore, for each target speaker,
pairings with other individuals are uniquely assigned to either the training or
evaluation set to prevent overlap.

Performance is measured using two standard metrics: accuracy (Acc) and
equal error rate (EER). Accuracy reflects the proportion of correct predictions,
while EER indicates the point at which false acceptance and false rejection rates
are equal. Higher accuracy and lower EER values correspond to better system
performance.

Table 1. The results on the test set

Test Set| Model |Acc (%) EER (%)
WavLM-Large
L FFN 77.96 21.79
Unseen
WavLM-Large
 SE-ResFFN 74.90 25.17
WavLM-Large
L FFN 90.77 9.08
Seen
WavLM-Large
+SE-ResFFN 94.42 5.49

5 Results and Analysis

Table 1 summarises the overall performance of our systems under two evaluation
scenarios: ‘Seen’ and ‘Unseen’. As expected, both models perform substantially
better on the ‘Seen’ test set, where speakers are present in the training data,
than on the ‘Unseen’ set, which evaluates generalisation to novel speakers. For
instance, the WavLM-Large+SE-ResFFN system achieves 94.42% accuracy and
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5.49% EER on ‘Seen’, but drops to 74.90% accuracy and 25.17% EER on ‘Un-
seen’. This gap highlights the difficulty of disentangling timbre attributes from
speaker identity, suggesting potential over-fitting to speaker-specific patterns.

Table 2. Evaluation results of our proposed systems on the ‘Unseen’ test set. The row
Avg is obtained by averaging the results across all the descriptors for each metric.

‘ Male ‘ Female
Model | Attribute  Acc (%) EER (%)| Attribute Acc (%) EER (%)

Bright (i) 69.12  31.82 |Bright (%) 58.56  41.43
Thin ()  73.71  24.67 | Thin (87#) 55.57  44.01
Low (f&¥T)  83.35  15.97 | Low (f&V1) 7145  28.13

Magnetic (#il4) 94.94 5.35 Coarse (1) 89.85 10.06
Pure (FZ#%)  88.79  10.61 Slim (4H)  88.79 5.81

\ Avg 81.98  17.69 |  Avg 73.94  25.89

Bright (B%) 65.49  32.52 |Bright (%) 49.33  48.27
Thin (BL#)  74.03  26.47 | Thin (BE7) 48.65  52.62
Low (&)  90.67  10.05 | Low (f1) 70.02  31.71

Magnetic (flit4) 80.31  19.80 | Coarse (1) 88.65  12.24
Pure (FZi%#)  88.38  11.72 Slim (4) 9340  6.33

| Avg 7978 2011 | Avg 70.01  30.23

WavLM-Large
+FFN

WavLM-Large
+SE-ResNet

Interestingly, the WavLM-Large+FFN model outperforms WavLM-Large+SE-
ResFFN in the ‘Unseen’ setting, while WavLM-Large+SE-ResFFN excels in the
‘Seen’ setting. This contrast may stem from the architectural complexity and
inductive biases of the models. The SE-ResFFN-based Diff-Net, with its deeper
layers and squeeze-and-excitation mechanisms, is better equipped to capture
fine-grained speaker-specific patterns, which benefits performance when the test
speakers are seen during training. However, this same specialisation may hin-
der generalisation to novel speakers, as the model may over-fit to specific traits
rather than learning robust, speaker-invariant representations. In contrast, the
simpler FFN-based Diff-Net architecture may generalise better due to its lower
model complexity and reduced reliance on dynamic feature weighting, which may
help it capture more speaker-invariant patterns and thus perform more robustly
in the ‘Unseen’ scenario. This observation suggests a trade-off between model
expressiveness and generalisation, and highlights the importance of tailoring ar-
chitectural choices to the target deployment context.

To further probe model robustness, we conducted small-scale experiments us-
ing speaker-disjoint training splits and observed considerable variation in results
depending on the speaker composition. This, along with the inherent subjec-
tivity in manual timbre labelling, suggests that model performance is sensitive
to both speaker identity and annotation consistency. Additionally, the dataset
[12] exhibits imbalance in descriptor frequency and gender representation-some
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Table 3. Evaluation results of our proposed systems on the ‘Seen’ test set.

‘ Male ‘ Female
Model | Attribute  Acc (%) EER (%)| Attribute Acc (%) EER (%)

Bright (Bi%) 93.38  7.03 |Bright (=) 85.06  14.97
Thin (B#) 92.85  6.53 | Thin (B3#) 90.14  9.34
Low (f\¥1)  96.05  3.37 | Low (f&Jl) 93.26  6.63

Magnetic (f#i1#) 95.25 4.80 | Coarse (1) 86.06  13.80
Pure (§77%)  79.40 20.33 | Slim () 9625  3.95

\ Avg 91.39 841 | Avg 90.15  9.74

Bright (B5%) 96.66  2.83 |Bright (%) 85.61  12.96
Thin (¥#)  97.42 3.00 | Thin (E7#) 89.21  10.79
Low (fi&i1) 98.10 1.30 | Low (fi&Jl) 97.49 3.32

Magnetic (Bi?) 99.62  0.40 | Coarse (F) 90.60  9.66

Pure (i)  91.88 8.47 Slim (4H)  97.55 2.20

\ Avg 96.74 320 |  Avg 92.09  7.78

WavLM-Large
+FFN

WavLM-Large
+SE-ResNet

attributes are under-represented, and female speakers dominate the data, yet
male speakers often yield better results. These factors collectively highlight the
need for more balanced data and refined annotation practices to improve gener-
alisation and fairness.

Detailed results for the ‘Unseen’ and ‘Seen’ test sets, broken down by gender
and descriptor, are listed in Table 2 and Table 3, respectively.

6 Conclusion

This paper presents the CUHK-EE-DSP&STL systems submitted to the vTAD
Challenge at NCMMSC 2025, designed to detect perceptual differences in voice
timbre attributes through pairwise utterance comparison. Our approach inte-
grates WavLM-Large embeddings with attentive statistical pooling for robust
speaker representation, followed by two variants of Diff-Net, i.e., FFN and SE-
ResFFN, for attribute intensity comparison. The systems achieved second place
in the ‘Unseen’ track and fourth place in the ‘Seen’ track, demonstrating com-
petitive performance across both generalisation and speaker-specific scenarios.
The results highlight the rich representational capacity of speech SSL models
like WavLM, especially when paired with carefully designed downstream archi-
tectures. Notably, the FFN model showed stronger generalisation to novel speak-
ers, while SE-ResFFN excelled in capturing fine-grained patterns among known
speakers, suggesting a trade-off between model complexity and robustness. Our
analysis also underscores the challenges posed by speaker variability, annotation
subjectivity, and data imbalance, pointing to key areas for future improvement.
These findings pave the way for further research in fine-grained speaker modelling
and voice attribute disentanglement using self-supervised speech representations.
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